Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Dyslexia Friendly Font

Increase Cursor Size

Share this story

As climate changes, plants might not suck carbon from the air fast enough

Current climate change models might be overestimating how much carbon dioxide plants can suck from the atmosphere.

Thanks to molecular research on photosynthesis done at the MSU-DOE Plant Research Laboratory (PRL), non-MSU atmospheric scientists have factored in a lesser understood photosynthetic limitation into their models.

The result: models suggest that atmospheric carbon dioxide concentrations might increase more rapidly than previously expected.

Photosynthesis supports life on Earth. Photosynthetic organisms capture carbon dioxide from the atmosphere and process it through a series of reactions known as the Calvin-Benson cycle.

Specifically, the carbon is used to make triose phosphate, a molecule which eventually turns into sucrose, the energy currency that powers plants and the food chain above them. The process is referred to as TPU (triose phosphate utilization).

But there is a limit to how much carbon plants can use.

“When photosynthesis gets too much carbon dioxide, it can’t process it into sugars fast enough,” says Tom Sharkey, University Distinguished Professor at the PRL. “Photosynthesis cannot indefinitely increase its productivity levels. It reaches a ceiling, and more carbon dioxide won’t help. In fact, plants sometimes absorb less carbon dioxide as levels increase in the atmosphere.”

“Some of our PRL labs have been studying the molecular bases of this TPU limitation,” Tom adds. “The atmospheric scientists approached my lab to properly factor that limitation into their model. As a result, we saw a rapid rate of increase of carbon dioxide in the model.”

"Plants’ ability to help us control atmospheric carbon dioxide levels is weaker than we thought."

For example, when the researchers assumed TPU limitation was doubled, further restricting photosynthesis, the models showed that 9 gigatons of carbon would remain in the atmosphere by 2100, instead of going into plants.

“The prognosis is more alarming than we previously thought. We need to better understand TPU limitation, because it is affected by many factors. So far, we know the limitation is worse at high light levels, when temperatures are colder, and at high carbon dioxide levels,” Tom says.

"The takeaway is that plants’ ability to help us control atmospheric carbon dioxide levels is weaker than we thought."

The study is published in the journal Environmental Research Letters.


Participating institutions include the National Center for Atmospheric Research, Texas Tech University, Purdue University, Cornell University, and the Brookhaven National Laboratory. The photosynthesis research contributing to these findings was funded by the US Department of Energy, Office of Basic Energy Sciences. Banner image of Industry Sunrise Air, Pixabay License.

 

Top Stories

Plant "ER": Advanced genomics illuminate new mechanisms for stress mitigation Plant "ER": Advanced genomics illuminate new mechanisms for stress mitigation

As our planet’s climate continues to be unpredictable, understanding how plants respond to adverse environmental conditions becomes essential. Improving crop productivity will be vital to feed the nine billion people estimated to be alive in 2050.

2022 Anton Lang Memorial Award winners announced 2022 Anton Lang Memorial Award winners announced

Grad student Philip Engelgau and postdoc Peipei Wang have been awarded the 2022 Anton Lang Memorial Award at a ceremony which took place on Monday, April 25, 2022. This year’s lecture was given by Professor Emeritus Govindjee from the University of Illinois at Urbana-Champaign.

Building 'nanofactories' to help make medicines and more [LINK] Building 'nanofactories' to help make medicines and more [LINK]

Spartan research in the lab of Cheryl Kerfeld could lead to efficient, low-cost chemical reactions for valuable products with help from teensy compartments made by bacteria.