Toggle Accessibility Tools

Harnessing the power of biology: Scientists 'go the distance' in electron transfer study

In one video, you see a dark, opaque surface, pulsating slowly. All of a sudden, a flash of light streaks across the surface with the intensity of a lightning bolt. The light spreads out, lingers brilliantly for a moment, before it melts away.

We are looking at millions of electrons buzzing within an artificial crystal, made of proteins. The electrons randomly hop between a network of electron carriers.


The video is part of a new study, recently published in the Journal of the American Chemical Society, from the labs of David M. Kramer, Hannah Distinguished Professor, and Daniel (Danny) Ducat, associate professor, in the MSU-DOE Plant Research Laboratory. The work explores how electrons can move across long distances within biomaterials, such as proteins.

Electron movement – what scientists call electron transfer – powers many of life’s functions. A good deal of the energy we derive from the foods we eat is captured by a process that removes electrons from food molecules, like sugar or fat, and transfers them to the oxygen we breathe.

Scientists are trying to harvest this ‘electricity from biology’ to power our technologies and produce new products, such as high-value medical compounds and hydrogen gas as a clean fuel source. We have a lot of ability to control electron transfer in metals or semiconductors, for example in batteries. Yet our control over electrons in living, biological systems is more limited. Researchers know a lot about electron transfer over very small distances - say, across tens of atoms. But the process of moving electrons over larger distances - even the length of one cell - remains somewhat of a mystery.

“One common way cells move electrons is to shuttle them around on small protein electron carriers,” Kramer says. “The carriers are ‘docking areas’ that carry the electrons around in a safe way around the cell. But, this method is not very efficient because it is undirected; the electrons move in a random way. Also, if oxygen comes into contact with these proteins, it can hijack the electrons and form toxic reactive oxygen species that can kill the cell.”

These issues have caused scientists to grapple with how to safely target the movement of electrons from one point to another.

Crystal sheets made of proteins

In the study, the labs report a new solid-state system that does just that. It consists of billions of biological electron carriers (cytochromes, named for their vivid red colors) arranged in a 3D crystal so that their electron carrying centers (hemes) are nearly in contact with each other. Electrons added into one part of the crystal rapidly hop from one carrier to another, moving across the entire length of the crystal.

The crystals are long and thin, so that the electrons move large distances. The crystals also protect the electrons from encountering oxygen. This feature could make electron transfer safer and more efficient.

David Kramer portrait
In a new study, David M. Kramer, an expert in bioenergetics and photosynthesis electron and proton transfer reactions, and his colleagues examine how electron transfer can occur safely and efficiently over long distances.
By Harley J Seeley, 2013

The new system mimics that of one found in some bacteria, like Shewanella. These organisms have evolved structures, dubbed “nanowires”, that allow electrons to move over fairly long distances, about as long as a typical bacterial cell. The new crystal “wires” are so much longer in comparison that one can even see them with the naked eye.

The team will use this system to examine the challenges behind long-range electron transfer.

“When a system contains thousands of loose parts, electron transfer is impacted by many factors,” says Jingcheng Huang, a postdoc in both the Kramer and Ducat labs. “The larger the system, the more unpredictable the electron transfer, compared to a single point-to-point jump.”

“Without a physical model to work with, like our crystals, it is hard to extrapolate the dynamics of short jumps onto larger surface areas. Our challenge will be to figure out how to efficiently move electrons over long distances, say microns (thousands of nanometers), which is necessary to create this futuristic microbial cell factory or power generation system” Huang adds.

Ducat lab portrait
Daniel Ducat (center) is part of a team that are trying to harvest electricity from biology to power our technologies and produce new products, such as high-value medical compounds and hydrogen gas as a clean fuel source.
By Victor DiRita, 2019

Kramer adds, “One very beautiful thing about the crystal wires is that we can make videos of the electrons moving. When an electron is on a heme carrier, the carrier changes its color. We can see electrons moving in real time with a simple video camera. This is allowing us to test whether the theory developed for short distance transfer can work over longer distances. In fact, the work suggests that some new, and unexpected, factors may become important in these solid-state systems. This new knowledge is pointing the way towards engineering better wires.”

The long-range game with these crystalline wires is to harness the electricity for useful applications in fields such as bioenergy and disease.

One idea is to connect two kinds of living cells that would be normally incompatible. For example, a cell that stores energy by photosynthesis could ‘wire’ the energy to another cell that uses it to make useful products. The wire link would allow both reactions to safely occur in the same space, since photosynthesis makes oxygen, which is toxic to many organisms.

“Indeed, some scientists think that if we can better understand and control the flow of electrons from living organisms, we could build systems where living cells directly communicate with electronic devices,” adds Ducat. “This idea may be quite a way off yet. But, such bio-hybrid devices could have a range of applications, from medicines to sustainable energy production.”

This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences. Banner image: One common way cells move electrons is to shuttle them around on small protein electron carriers. This banner image depicts a rendition of electron carrier proteins, with the electron carrying centers in red. By Jingcheng Huang, post-doctoral associate, MSU-DOE Plant Research Laboratory, 2020


Share this story

Top Stories

Thomas Sharkey receives NSF grant to study isoprene emission from plants Thomas Sharkey receives NSF grant to study isoprene emission from plants

The four-year, $898,946 grant from the National Science Foundation will allow Sharkey to continue his research on the evolutionary pattern of the appearance and loss of isoprene emission among various land plants and the impact of these emissions have on the atmosphere.

Improving Photosynthesis: The Final Frontier? [LINK] Improving Photosynthesis: The Final Frontier? [LINK]

This long-from article details how our scientists are working to unlock the secrets of photosynthesis, an effort which might spur an agricultural revolution and lead to innovative energy and industrial technologies. The article appears in Futures, a magazine produced twice per year by Michigan State University AgBioResearch.

NSF-funded project explores plant metabolism links to climate change, human nutrition NSF-funded project explores plant metabolism links to climate change, human nutrition

MSU plant biologist Berkley Walker is part of a team of scientists that is using a 3-year, $1.4 million National Science Foundation  Molecular and Cellular Biosciences award to explore the intersection between photorespiration and one-carbon metabolism, two plant biochemical processes that are critical to plant growth and human nutrition.