Toggle Accessibility Tools

[VIDEO] Our first ever look at bacterial organelle shells

Remember when, in biology class, we were taught that animal and plant cells had little organelles in them – like chloroplasts or mitochondria – and bacteria lacked those? And how that fact made bacteria feel a bit less special?

It turns out bacteria have their own counterparts, called bacterial microcompartments (or BMCs for short).

And, in a feat that took about two years to accomplish, Cheryl Kerfeld and her lab have seen the fine details of the shells that make up these bacterial organelles, which function as the organisms’ nano-factories.

The results, led by Michigan State University are featured in the current issue of Science.

“We’ve produced a detailed snapshot – at atomic-level resolution – of the membrane of bacterial organelles,” says Cheryl Kerfeld the Hannah Distinguished Professor of Structural Bioengineering at the MSU-DOE Plant Research Lab. “By seeing the intact bacterial organelle shell, we now understand how the basic building blocks are put together to construct the organelle membrane.”

Markus Sutter, co-author says, “It is like you see something kind of blurry. You put glasses on, and then you see it all clear. This is really exciting. This is what we have been looking to do for years.”

The structure described is likely to become the textbook model of the membrane of primitive bacterial organelles, Kerfeld says.

GIF of the bacterial shell
A GIF of the bacterial microcompartment.
Source: Markus Sutter

Why this is important: BMCs for nanotechnologies

While plant and animal cell organelles are made of lipids (small molecules found in fats, oils, and waxes), BMCs are made of different types of proteins.

BMCs are used differently across a diverse range of bacteria. Some pathogenic bacteria use them to outcompete “good” bacteria, while others use BMCs to create energy compounds through photosynthesis.

But the protein shells that make up BMCs are fundamentally the same. And now that Kerfeld and her team can see a BMC structure, it makes it easier to understand how BMCs work and target them for medical or renewable energy applications.

The structure described is likely to become the textbook model of the membrane of primitive bacterial organelles.

“Our results provide the structural basis to design experiments to explain how molecules cross the organelle shell, how specific enzymes are targeted to the inside and how the shells self-assemble,” said Kerfeld, who’s also an affiliate of Lawrence Berkeley National Laboratory.

“This work also provides the foundation to develop therapeutics to disrupt the assembly and function of the BMCs found in pathogens or enhance those that play a role in photosynthesis in order to make fuel molecules, rubber, or plastic.”

For more, check out the original story on MSU Today by Layne Cameron.

 

Share this story

Top Stories

Josh Vermaas starts faculty position at PRL Josh Vermaas starts faculty position at PRL

Josh Vermaas, the newest addition to the MSU-DOE Plant Research Laboratory faculty body, has begun his assistant professorship this month. Josh is a computational biophysicist whose research interests include developing computational models to better understand membrane processes and plant materials.

Learning what it takes to grow a space garden Learning what it takes to grow a space garden

With the support of NASA, the lab of Federica Brandizzi has been studying how plants survive in space conditions. A new study starts revealing how a plant system – which helps plants manage various types of Earthly stresses, such as extreme heat – might function in space.

[LINK] Two PRL faculty named 2020 Highly Cited Researchers [LINK] Two PRL faculty named 2020 Highly Cited Researchers

Christoph Benning and Gregg Howe are two of the four MSU College of Natural Science (CNS) researchers named Highly Cited Researchers, an annual compilation of the global leaders in scientific influence by Clarivate Analytics. The linked article features both scientists.