Toggle Accessibility Tools

A new method to reveal the molecular landscapes of photosynthetic membranes inside green algae cells

A collaboration with Max Planck Institutes in Germany has led to a new visualization approach that produces a topological view of these native membranes.


Image of photosynthetic membranes produced by the new visualization method
Image of photosynthetic membranes produced by the new visualization method.

Scientific Achievement

The latest advances in cryo-electron tomography were used to image photosynthetic protein complexes embedded within native thylakoid membranes inside the cell.

Significance and Impact

This high-resolution imaging revealed how the intricate network of thylakoid membranes sorts protein complexes into distinct regions to tune the photosynthetic reactions. A surprising discovery shows how large Photosystem II supercomplexes may be able to move fluidly through the crowded membranes, maintaining efficient capture of light energy and transfer of electrons to other complexes.

Research Details

  • A new visualization approach called a ‘membranogram’ projects tomographic images of the proteins onto the surface of the segmented membrane, producing a molecular view of native membrane topology.
  • PSII were mostly found in the appressed region, whereas PSI, ATP synthase and ribosomes were restricted to the non-appressed region, and Cytb6f were found with equal abundance in both regions.
  • PSII supercomplexes randomly overwrap between appressed membranes, apparently not maintaining stacking.

Related people: Wojciech Wietrzynski, Miroslava Schaffer, Dimitry Tegunov, Sahradha Albert, Atsuko Kanazawa, Jürgen M Plitzko, Wolfgang Baumeister, Benjamin D Engel (CA)

DOI: 10.7554/eLife.53740

Download the highlight

This work was partially funded by the US Department of Energy, Office of Basic Energy Sciences. Contributions from Dr. Kanazawa, from the MSU-DOE Plant Research Laboratory, include: Data curation, Formal analysis, Investigation, and 77K measurements

Top Stories

Understanding how algal cells divide when they are hungry Understanding how algal cells divide when they are hungry

A new study delves into how algae manage cell division processes when they suffer from starvation. The finding has implications for biofuel technologies, given that algae have the potential to become a sustainable source of high value oils.

2020 Anton Lang Memorial Award winners announced 2020 Anton Lang Memorial Award winners announced

Kellie Walters and Bryan Ferlez were both recognized as scientists who exemplify the research excellence, ideas, dedication, and vision of former PRL director, Anton Lang.

Beronda Montgomery named MSU Office of Research & Innovation interim assistant vice president [LINK] Beronda Montgomery named MSU Office of Research & Innovation interim assistant vice president [LINK]

MSU Foundation Professor, Beronda Montgomery, will bring her talents to the Office of Research & Innovation as interim assistant vice president. She joined the team in a half-time capacity effective Sept. 15, 2020.