Toggle Accessibility Tools

A new method to reveal the molecular landscapes of photosynthetic membranes inside green algae cells

A collaboration with Max Planck Institutes in Germany has led to a new visualization approach that produces a topological view of these native membranes.


Image of photosynthetic membranes produced by the new visualization method
Image of photosynthetic membranes produced by the new visualization method.

Scientific Achievement

The latest advances in cryo-electron tomography were used to image photosynthetic protein complexes embedded within native thylakoid membranes inside the cell.

Significance and Impact

This high-resolution imaging revealed how the intricate network of thylakoid membranes sorts protein complexes into distinct regions to tune the photosynthetic reactions. A surprising discovery shows how large Photosystem II supercomplexes may be able to move fluidly through the crowded membranes, maintaining efficient capture of light energy and transfer of electrons to other complexes.

Research Details

  • A new visualization approach called a ‘membranogram’ projects tomographic images of the proteins onto the surface of the segmented membrane, producing a molecular view of native membrane topology.
  • PSII were mostly found in the appressed region, whereas PSI, ATP synthase and ribosomes were restricted to the non-appressed region, and Cytb6f were found with equal abundance in both regions.
  • PSII supercomplexes randomly overwrap between appressed membranes, apparently not maintaining stacking.

Related people: Wojciech Wietrzynski, Miroslava Schaffer, Dimitry Tegunov, Sahradha Albert, Atsuko Kanazawa, Jürgen M Plitzko, Wolfgang Baumeister, Benjamin D Engel (CA)

DOI: 10.7554/eLife.53740

Download the highlight

This work was partially funded by the US Department of Energy, Office of Basic Energy Sciences. Contributions from Dr. Kanazawa, from the MSU-DOE Plant Research Laboratory, include: Data curation, Formal analysis, Investigation, and 77K measurements

Top Stories

Using Artificial Intelligence to delve into plant cell secrets Using Artificial Intelligence to delve into plant cell secrets

A new AI system, called DeepLearnMOR, can identify organelles and classify hundreds of microscopy images in a matter of seconds and with an accuracy rate of over 97%. The study illustrates the potential of AI to significantly increase the scope, speed, and accuracy of screening tools in plant biology.

Study links energy metabolism to reduced fertility in overheated bean crops Study links energy metabolism to reduced fertility in overheated bean crops

The study reports that the activity levels of the carbon metabolism protein, G6PDH, are related to decreased production of pollen in bean flowers. As global temperatures rise, some bean crops, including Michigan-grown varieties, might be more sensitive to higher heat levels.

2021 Anton Lang Memorial Award winners announced 2021 Anton Lang Memorial Award winners announced

Evan Angelos and Hainan Zhao were recognized during a ceremony which took place online on Monday, April 19, 2021. The Anton Lang Memorial Fund was established in honor of the founding director of the MSU-DOE Plant Research Laboratory, who passed away in 1996.