Toggle Accessibility Tools

Building a better fluorescence estimation of electron transport in plants

In a letter published in the journal New Phytologist, researchers suggest a correction for fluorescent measurements of electron transport.


Figure of fluorescence measurements, corrected and uncorrected.
Correcting fluorescent measurements of electron transport (JF) for this discrepancy (above) improves linearity between JF and the calculated electron usage for carbon metabolism (JC).

Scientific Achievement

A correction for non-photosynthetic absorption of light in calculations of electron transport.

Significance and Impact

Fluorescence measurements of electron transport help determine crop productivity. This correction addresses overestimations of photosynthetic quantum yield that distort the calculation. This correction is important for models of carbon assimilation, CO2 diffusivity through the leaf, and nitrogen assimilation, indicators of photosynthetic productivity and crop yield.

Research Details

  • There is variation in quantum yield of carbon by wavelength, described by an action spectrum. The action spectrum by McCree (1970) was used as justification for eliminating far-red and ultraviolet light as photosynthetically active – the plant absorbs somewhat at these wavelengths, but it does not drive photosynthesis.
  • Plants absorb more blue light than red light, but blue light is less effective at driving photosynthesis due in part to absorption by non-photosynthetic pigments.
  • Correcting fluorescent measurements of electron transport (JF) for this discrepancy (see figure) improves linearity between JF and the calculated electron usage for carbon metabolism (JC).
  • Action-corrected data will be important for methods requiring accurate electron transport measurements, including estimations of mesophyll conductance and nitrogen assimilation.

Related people: Alain McClain, Thomas D. Sharkey (CA)

DOI: 10.1111/nph.16255

Download the highlight

This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences.

Top Stories

Beronda Montgomery named MSU Office of Research & Innovation interim assistant vice president [LINK] Beronda Montgomery named MSU Office of Research & Innovation interim assistant vice president [LINK]

MSU Foundation Professor, Beronda Montgomery, will bring her talents to the Office of Research & Innovation as interim assistant vice president. She joined the team in a half-time capacity effective Sept. 15, 2020.

MSU doctoral student Ethan Thibault awarded prestigious NSF fellowship [LINK] MSU doctoral student Ethan Thibault awarded prestigious NSF fellowship [LINK]

The National Science Foundation Graduate Research Fellowship is one of the country’s most prestigious and competitive awards for graduate students. The program recognizes and supports outstanding graduate students who are pursuing research-based masters and doctoral degrees in fields within NSF’s mission.

Newly discovered sugar transporter might help beans tolerate hot temperatures Newly discovered sugar transporter might help beans tolerate hot temperatures

The lab of Thomas D. Sharkey have characterized a sucrose transporter protein found in common beans. The recently discovered protein, called PvSUT1.1, could help us understand how beans tolerate hot temperatures.