Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Dyslexia Friendly Font

Increase Cursor Size

Building a better fluorescence estimation of electron transport in plants

In a letter published in the journal New Phytologist, researchers suggest a correction for fluorescent measurements of electron transport.


Figure of fluorescence measurements, corrected and uncorrected.
Correcting fluorescent measurements of electron transport (JF) for this discrepancy (above) improves linearity between JF and the calculated electron usage for carbon metabolism (JC).

Scientific Achievement

A correction for non-photosynthetic absorption of light in calculations of electron transport.

Significance and Impact

Fluorescence measurements of electron transport help determine crop productivity. This correction addresses overestimations of photosynthetic quantum yield that distort the calculation. This correction is important for models of carbon assimilation, CO2 diffusivity through the leaf, and nitrogen assimilation, indicators of photosynthetic productivity and crop yield.

Research Details

  • There is variation in quantum yield of carbon by wavelength, described by an action spectrum. The action spectrum by McCree (1970) was used as justification for eliminating far-red and ultraviolet light as photosynthetically active – the plant absorbs somewhat at these wavelengths, but it does not drive photosynthesis.
  • Plants absorb more blue light than red light, but blue light is less effective at driving photosynthesis due in part to absorption by non-photosynthetic pigments.
  • Correcting fluorescent measurements of electron transport (JF) for this discrepancy (see figure) improves linearity between JF and the calculated electron usage for carbon metabolism (JC).
  • Action-corrected data will be important for methods requiring accurate electron transport measurements, including estimations of mesophyll conductance and nitrogen assimilation.

Related people: Alain McClain, Thomas D. Sharkey (CA)

DOI: 10.1111/nph.16255

Download the highlight

This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences.

Top Stories

Why this promising biofuel crop takes a summer break Why this promising biofuel crop takes a summer break

By explaining a photosynthetic peculiarity in switchgrass, MSU researchers from the Walker lab may have unlocked even more of the plant’s potential.

Untying molecular knots: Making molecular simulations more efficient with LongBondEliminator Untying molecular knots: Making molecular simulations more efficient with LongBondEliminator

Researchers from the Vermaas lab created a more efficient tool to solve the problem of ring piercings in molecular simulations. This work is published in Biomolecules.

From colleagues to collaborators, a cross-department conversation links statistics to plant science From colleagues to collaborators, a cross-department conversation links statistics to plant science

Complicated sets of biological data can be challenging to extrapolate meaningful information from. Wanting to find a better way to look at this data led Berkley Walker, assistant professor at the MSU-DOE Plant Research Laboratory, to team up with statistician and Assistant Professor Chih-Li Sung from the Department of Statistics and Probability.