Toggle Accessibility Tools

Building a better fluorescence estimation of electron transport in plants

In a letter published in the journal New Phytologist, researchers suggest a correction for fluorescent measurements of electron transport.


Figure of fluorescence measurements, corrected and uncorrected.
Correcting fluorescent measurements of electron transport (JF) for this discrepancy (above) improves linearity between JF and the calculated electron usage for carbon metabolism (JC).

Scientific Achievement

A correction for non-photosynthetic absorption of light in calculations of electron transport.

Significance and Impact

Fluorescence measurements of electron transport help determine crop productivity. This correction addresses overestimations of photosynthetic quantum yield that distort the calculation. This correction is important for models of carbon assimilation, CO2 diffusivity through the leaf, and nitrogen assimilation, indicators of photosynthetic productivity and crop yield.

Research Details

  • There is variation in quantum yield of carbon by wavelength, described by an action spectrum. The action spectrum by McCree (1970) was used as justification for eliminating far-red and ultraviolet light as photosynthetically active – the plant absorbs somewhat at these wavelengths, but it does not drive photosynthesis.
  • Plants absorb more blue light than red light, but blue light is less effective at driving photosynthesis due in part to absorption by non-photosynthetic pigments.
  • Correcting fluorescent measurements of electron transport (JF) for this discrepancy (see figure) improves linearity between JF and the calculated electron usage for carbon metabolism (JC).
  • Action-corrected data will be important for methods requiring accurate electron transport measurements, including estimations of mesophyll conductance and nitrogen assimilation.

Related people: Alain McClain, Thomas D. Sharkey (CA)

DOI: 10.1111/nph.16255

Download the highlight

This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences.

Top Stories

Josh Vermaas starts faculty position at PRL Josh Vermaas starts faculty position at PRL

Josh Vermaas, the newest addition to the MSU-DOE Plant Research Laboratory faculty body, has begun his assistant professorship this month. Josh is a computational biophysicist whose research interests include developing computational models to better understand membrane processes and plant materials.

Learning what it takes to grow a space garden Learning what it takes to grow a space garden

With the support of NASA, the lab of Federica Brandizzi has been studying how plants survive in space conditions. A new study starts revealing how a plant system – which helps plants manage various types of Earthly stresses, such as extreme heat – might function in space.

[LINK] Two PRL faculty named 2020 Highly Cited Researchers [LINK] Two PRL faculty named 2020 Highly Cited Researchers

Christoph Benning and Gregg Howe are two of the four MSU College of Natural Science (CNS) researchers named Highly Cited Researchers, an annual compilation of the global leaders in scientific influence by Clarivate Analytics. The linked article features both scientists.