Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Dyslexia Friendly Font

Increase Cursor Size

Considering multiple binding sites for proteins with domain similar to the small subunit of rubisco

Protein modeling in cyanobacteria predicts binding interactions between rubisco and proteins with homology to the small subunit of rubisco.


Figure of rubisco with large and small subunits
L8S8 rubisco is shown with 8 large (RbcL, green) and 8 small (RbcS, yellow) subunits. Small subunit-like domains (SSLDs) have been shown to bind to the equatorial M position (blue), but when considering an open S1 position, an SSLD could form favorable interactions (black). These are improved when considering the linker region (burgundy) that was absent in all experiments showing binding at the M position.

Scientific Achievement

Protein homology modeling in cyanobacteria predicts binding interactions, at two sites, between rubisco and proteins with a domain (SSLD) similar to the small subunit of rubisco.

Significance and Impact

Rubisco fixes carbon dioxide (CO2) during the process of photosynthesis. The study suggests that SSLDs could bind at additional rubisco sites than previously shown. This variety suggests dynamic regulatory mechanisms to be explored regarding these protein-protein interactions.

Research Details

  • The small subunit-like domain is found in two proteins in cyanobacteria and is important for their interaction with rubisco.
  • They may bind in the same location as the rubisco small subunit, since they are homologous to the small subunit of rubisco, though recent studies suggest that the binding is at a different site.
  • Modeling of the full small subunit-like domains in an additional organism supports a view that considers binding at both sites.
  • The small subunit-like domain is not expected to bind the S1 position as well as RbcS, but it still forms favorable interactions at this site and maintains many important interactions, especially when considering residues that were absent in published experimental studies.
  • Previous work studied environments that would favor the new M binding site, but other conditions, species, and post-translational modifications could allow for binding at the small subunit site as well.

Related people: Brandon Rohnke, Cheryl Kerfeld, Beronda Montgomery (CA)

DOI: 10.3389/fmicb.2020.00187

Download the highlight

This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences.

Top Stories

MSU's Jianping Hu receives NSF grant to shed light on plant growth, reproduction MSU's Jianping Hu receives NSF grant to shed light on plant growth, reproduction

Jianping Hu, professor at the MSU-DOE Plant Research Laboratory (PRL) and the Department of Plant Biology, received a $900,000 grant from the National Science Foundation (NSF) to study the motility of cellular energy organelles, peroxisomes and mitochondria in particular, along the cytoskeleton in Arabidopsis thaliana.

Plant "ER": Advanced genomics illuminate new mechanisms for stress mitigation Plant "ER": Advanced genomics illuminate new mechanisms for stress mitigation

As our planet’s climate continues to be unpredictable, understanding how plants respond to adverse environmental conditions becomes essential. Improving crop productivity will be vital to feed the nine billion people estimated to be alive in 2050.

2022 Anton Lang Memorial Award winners announced 2022 Anton Lang Memorial Award winners announced

Grad student Philip Engelgau and postdoc Peipei Wang have been awarded the 2022 Anton Lang Memorial Award at a ceremony which took place on Monday, April 25, 2022. This year’s lecture was given by Professor Emeritus Govindjee from the University of Illinois at Urbana-Champaign.