Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Dyslexia Friendly Font

Increase Cursor Size

Investigation of a protein family that generates plant cell walls

A new study increases our understanding of the biosynthesis of xyloglucan, one of the most common polysaccharides in plant primary cell walls.


Figure of phylogenetic analysis of the CSLC protein family

Phylogenetic analysis of CSLC protein family: A total of 325 CSLC sequences from various plant groups were used (Bryophytes/ Lycophytes, Ferns, Gymnosperms, Basal angiosperms, Monocots, and Eudicots). Orange, CSLC4 lineage; Red, CSLC5/ 8 lineage; Blue, CSLC12 lineage; Green, CSLC6 lineage; Black, ancient CSLC. From PNAS journal, Copyright 2020 National Academy of Sciences

Scientific Achievement

Reverse genetic studies on Arabidopsis cellulose synthase like-C (CSLC) genes show that these genes synthesize the xyloglucan (XyG) glucan backbone.

Significance and Impact

Plant cells have complex cell walls that are important for maintaining their structural and functional integrity. XyG is one of the most common polysaccharides in the primary cell wall. Although XyG’s structure is well known, its biosynthesis is poorly understood. This study identifies the enzymes responsible for XyG synthesis by demonstrating that all 5 members of the CSLC family synthesize the XyG backbone. The evidence provided in the work that deletion of CSLC-function leads to cell walls devoid of XyG raises important questions regarding cell wall reorganization and the role of XyG during plant development. Addressing these questions will provide fruitful means for plant cell wall engineering.

Research Details

  • Researchers have generated a variety of mutant combinations to investigate XyG synthesis.
  • Biochemical analyses using high-performance anion exchange chromatography (HPAEC) and linkage analysis using GC/MS indicated that the mutant lacking all CSLC genes cannot produce XyG.
  • Phenotypic analyses using XyG mutants indicated the organ/tissue specific roles for some of the CSLC genes.
  • By generating complementation lines with each CSLC member, the researchers demonstrated that all CSLC members are XyG backbone synthases.
  • Phylogenetic analyses support an increased diversification of CSLC genes, including the recent evolution of CSLC4 genes in eudicots, most likely from an ancestral CSLC group.

Related people: Sang-Jin Kim, Balakumaran Chandrasekar Anne C. Rea, Linda Danhof, Starla Zemelis-Durfee, Nicholas Thrower, Zachary S. Shepard, Markus Pauly, Federica Brandizzi (CA), and Kenneth Keegstra (CA)

DOI: 10.1073/pnas.2007245117

Download the highlight

Top Stories

Plants get stressed too. We're looking at thousands of genes to understand how they manage it. Plants get stressed too. We're looking at thousands of genes to understand how they manage it.

MSU scientists have developed a new gene discovery method that is helping them to understand how plants recover from stressful situations in their environments.

How do algae survive excess oxygen? Recent discovery gives clues to boost biofuel production How do algae survive excess oxygen? Recent discovery gives clues to boost biofuel production

A new study from the MSU-DOE Plant Research Laboratory (PRL) shows how some algae can protect themselves when the oxygen they produce impairs their photosynthetic activity. The discovery also answers a long-standing question about how algae survive when CO2 levels are low.

New limitations to photosynthesis discovered by observing plants in the real world New limitations to photosynthesis discovered by observing plants in the real world

Using innovative methodologies that combine biology and statistics, researchers from the Kramer lab at the MSU-DOE Plant Research Laboratory (PRL) observe the ways plants respond to their natural environments.