Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Dyslexia Friendly Font

Increase Cursor Size

Modifying a bacterial microcompartment shell proteins to bind metal ions for electron transfer with electrodes

The Kerfeld lab, in collaboration with the Naval Research Lab, has engineered a bacterial shell protein to incorporate copper for redox activity.


Figure of proteins showing electrochemical interactions
Electrode bound BMCs T1 proteins showed good electrochemical interactions when bound to an electrode, which could provide an infinite source/sink of electrons to the BMC as these structures continued to be developed for biotechnological applications.

Scientific Achievement

Engineered a shell protein to incorporate copper for redox activity with an electrode surface.

Significance and Impact

Demonstrates the ability to expand the functionality of engineered bacterial microcompartments to non-native applications. Harnessing natural biological processes to synthesize new materials are key for developing future functional bioreactors and biomaterials.

Research Details

  • We designed, synthesized, and characterized a bacterial microcompartment shell protein for redox reactions by engineering either a Cu or [4Fe-4S] binding site.
  • Protein film voltammetry demonstrates tunable redox activity when the protein is attached to an electrode surface, which is preferable to solution state reactivity for many biomaterials applications. 

Related people: Jefferson Plegaria, Matthew Yates, Sarah Glaven, Cheryl A. Kerfeld (CA)

DOI: 10.1021/acsabm.9b01023

Download the highlight

This work was primarily funded by the US Department of Energy, Office of Basic Energy, with additional funding by the Naval Research Laboratory and the US Department of Defense.

Top Stories

Why this promising biofuel crop takes a summer break Why this promising biofuel crop takes a summer break

By explaining a photosynthetic peculiarity in switchgrass, MSU researchers from the Walker lab may have unlocked even more of the plant’s potential.

Untying molecular knots: Making molecular simulations more efficient with LongBondEliminator Untying molecular knots: Making molecular simulations more efficient with LongBondEliminator

Researchers from the Vermaas lab created a more efficient tool to solve the problem of ring piercings in molecular simulations. This work is published in Biomolecules.

From colleagues to collaborators, a cross-department conversation links statistics to plant science From colleagues to collaborators, a cross-department conversation links statistics to plant science

Complicated sets of biological data can be challenging to extrapolate meaningful information from. Wanting to find a better way to look at this data led Berkley Walker, assistant professor at the MSU-DOE Plant Research Laboratory, to team up with statistician and Assistant Professor Chih-Li Sung from the Department of Statistics and Probability.