Toggle Accessibility Tools

Modifying a bacterial microcompartment shell proteins to bind metal ions for electron transfer with electrodes

The Kerfeld lab, in collaboration with the Naval Research Lab, has engineered a bacterial shell protein to incorporate copper for redox activity.


Figure of proteins showing electrochemical interactions
Electrode bound BMCs T1 proteins showed good electrochemical interactions when bound to an electrode, which could provide an infinite source/sink of electrons to the BMC as these structures continued to be developed for biotechnological applications.

Scientific Achievement

Engineered a shell protein to incorporate copper for redox activity with an electrode surface.

Significance and Impact

Demonstrates the ability to expand the functionality of engineered bacterial microcompartments to non-native applications. Harnessing natural biological processes to synthesize new materials are key for developing future functional bioreactors and biomaterials.

Research Details

  • We designed, synthesized, and characterized a bacterial microcompartment shell protein for redox reactions by engineering either a Cu or [4Fe-4S] binding site.
  • Protein film voltammetry demonstrates tunable redox activity when the protein is attached to an electrode surface, which is preferable to solution state reactivity for many biomaterials applications. 

Related people: Jefferson Plegaria, Matthew Yates, Sarah Glaven, Cheryl A. Kerfeld (CA)

DOI: 10.1021/acsabm.9b01023

Download the highlight

This work was primarily funded by the US Department of Energy, Office of Basic Energy, with additional funding by the Naval Research Laboratory and the US Department of Defense.

Top Stories

Plants and photosynthesis: What's making plants lose their lunch? Plants and photosynthesis: What's making plants lose their lunch?

A new study from Michigan State University is shedding light on how plants could potentially become more efficient at photosynthesis. The long-term implications of this research range from improved agricultural productivity to predicting the effects of climate change.

Josh Vermaas starts faculty position at PRL Josh Vermaas starts faculty position at PRL

Josh Vermaas, the newest addition to the MSU-DOE Plant Research Laboratory faculty body, has begun his assistant professorship this month. Josh is a computational biophysicist whose research interests include developing computational models to better understand membrane processes and plant materials.

Learning what it takes to grow a space garden Learning what it takes to grow a space garden

With the support of NASA, the lab of Federica Brandizzi has been studying how plants survive in space conditions. A new study starts revealing how a plant system – which helps plants manage various types of Earthly stresses, such as extreme heat – might function in space.