Toggle Accessibility Tools

The limits of photosynthetic efficiency

Increasing the efficiency of the ATP synthase could lead to ROS production. This has important implications for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.


Figure of c ring variations and effect on photosynthesis

Scientific Achievement

Experimental and computational studies demonstrated that increasing the efficiency of one energy storing reaction in photosynthesis will likely lead to production of deleterious reactive oxygen species in others. To cope with these trade-offs, Nature has tuned photosynthesis to balance the needs for efficient and safe energy storage.

Significance and Impact

It has been proposed that genetically modifying the protein subunit stoichiometry for the chloroplast ATP synthase could lead to substantial increases in the efficiency of photosynthesis. We show that this strategy will likely fail because it leads to photodamage and loss of yield. Instead, our work suggests a new engineering approach that increases efficiency while avoiding deleterious side reactions.

Research Details

  • Photosynthesis uses light to store energy in a redox gradient and an electrochemical proton gradient (proton motive force, pmf), which drives the synthesis of ATP through the thylakoid FoF1-ATP synthase. ATP synthase structure and function are conserved across biological kingdoms, but the number of ion–binding c subunits varies between organisms, which alters the proton/ATP ratio, with implications for metabolism. Essentially, the c-ring size sets the “gear ratio” of photosynthesis, and it has been suggested that decreasing their size, or increasing the gear ratio, could improve photosynthetic efficiency.
  • However our experiments and simulations predict that the change in energy storage will cause large increases in pmf, destabilizing charge separated states in photosystem II, leading to production of reactive oxygen species. Thus, the large c-ring size may be optimized to prevent photodamage. This has important implications for the evolution and regulation of photosynthesis as well as for synthetic biology efforts to alter photosynthetic efficiency by engineering the ATP synthase.
  • We propose that engineering efforts be focused instead on adjusting the storage of pmf and the energy storing reactions of PSII to prevent recombination.

Related people: Geoffry Davis, David M. Kramer (CA) 

DOI: 10.3389/fpls.2019.01778

Download the highlight

This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences.

Top Stories

Thomas Sharkey receives NSF grant to study isoprene emission from plants Thomas Sharkey receives NSF grant to study isoprene emission from plants

The four-year, $898,946 grant from the National Science Foundation will allow Sharkey to continue his research on the evolutionary pattern of the appearance and loss of isoprene emission among various land plants and the impact of these emissions have on the atmosphere.

Improving Photosynthesis: The Final Frontier? [LINK] Improving Photosynthesis: The Final Frontier? [LINK]

This long-from article details how our scientists are working to unlock the secrets of photosynthesis, an effort which might spur an agricultural revolution and lead to innovative energy and industrial technologies. The article appears in Futures, a magazine produced twice per year by Michigan State University AgBioResearch.

NSF-funded project explores plant metabolism links to climate change, human nutrition NSF-funded project explores plant metabolism links to climate change, human nutrition

MSU plant biologist Berkley Walker is part of a team of scientists that is using a 3-year, $1.4 million National Science Foundation  Molecular and Cellular Biosciences award to explore the intersection between photorespiration and one-carbon metabolism, two plant biochemical processes that are critical to plant growth and human nutrition.